

DIGITAL AND
 COMMUNICATION
 ELECTRONICS

Mr. VISHAL P. PATIL
"This book is specially designed according to the syllabus of B.Sc.
Third year Physics (CBCS Pattern), Digital And Communication Electronics, Swami Ramanand Teerth Marathwada University, Nanded effective from academic year 2021-22"

ACKNOWLEDGEMENT

I offer my deepest gratitude to the authority of Nutan Vidyalaya Shikshan Sanstha, Selu especially, the President, Hon. Dr. S.M. Loya, and the Secretary, Hon. Dr. V.K. Kothekar , Asst.Secretary, Hon.Shri. Jaiprakashji Bihani , Hon.Former Principal of Nutan Mahavidyalaya, Sailu Dr. S.S. Kulkarni, Dr.Mahendra S.Shinde -I/C Principal Nutan Mahavidyalaya, Sailu, Vice Principal Dr.U.C.Rathod and Managing Body of the institute for their constant encouragement and support.

Special vote of thanks to be extended to Dr.N.S.Padmavat -IQAC Co-ordinator at Nutan Mahavidyalaya, Sailu, Dr.B.K.Kumthekar -Head Of Department of Physics, Nutan Mahavidyalaya,Sailu ,Dr.M.R.Katkar -Librarian Nutan Mahavidyalaya, Sailu

I express my warm thanks to all my colleagues at Nutan Mahavidyalaya, Sailu.
I am eternally grateful to my mother Mrs. Manda P. Patil for constantly inspiring me to do my best in my life

Mr. Vishal P. Patil
(Asst.Professor)
Department Of Physics
Nutan Mahavidyalaya, Selu

About Author
"Author has completed his, M.Sc. in Physics (SET), has been
working as an Assistant Professor In Phvsics on clock hour basis
from 2016 at department of Physics, Nutan Mahavidylaya, Sailu.
He has been teaching there Digital and Communication Electronics
to B.Sc.Third Year Students from last 7 years"

CONTENT:

UNIT-1:-NUMBER SYSTEMS

- DECIMAL NUMBERS
- BINARY NUMBERS
- BINARY ARITHMETICS
- ONES COMPLIMENT REPRESENTATION
- TWOS COMPLIMENT REPRESENTATION
- OCTAL NUMBERS
- HEXADECIMAL NUMBERS
- INTERCONVERSION OF NUMBER SYSTEMS
- BINARY CODED DECIMAL (BCD)
- GRAY CODE
- EXCESS-3-CODE

UNIT-2:-LOGIC GATES

- AND GATE
- OR GATE
- NOT GATE
- NAND GATE
- NOR GATE
- EX-OR GATE
- EX-NOR GATE
- UNIVERSAL PROPERTIES OF NAND GATE AND NOR GATE
- BOOLEAN OPERATIONS
- LOGIC EXPRESSIONS FOR 2,3 AND 4 INPUTS
- LAWS OF BOOLEAN ALGEBRA
- DE'MORGEN'S THEOREMS
- SOP FORM OF BOOLEAN EXPRESSIONS
- SIMPLIFICATION OF BOOLEAN EXPRESSION USING K-MAPS(UP TO 4 VARIABLES)
- HALF ADDER
- FULL ADDER

UNIT 3:-MODULATION AND DEMODULATION.
Page No: 66

- INTRODUCTION
- TYPES OF MODULATION
- EXPRESSION FOR A.M.VOLTAGE
- A.M.WAVES
- FREQUENCY SPECTRUM OF A.M.WAVES
- POWER OUTPUT IN AM
- EXPRESSION FOR FREQUENCY MODULATED VOLTAGE
- PRINCIPLE OF DEMODULATION
- LINEAR DIODE AM DETECTOR OR DEMODULATER

UNIT 4:-COMMUNICATION ELECTRONICS

- INTRODUCTION
- BLOCK DIAGRAM OF BASIC COMMUNICATION SYSTEM
- ESSENTIAL ELEMENTS OF A.M. TRANSMITTER
- A.M. RECEIVER
- TUNNED RADIO FREQUENCY (TRF) RECEIVER
- SUPER HETERODYNE RECEIVER
- CHARCHTERISTICS OF RADIO RECEIVERS:SENSITIVITY,SELECTIVITY,FIDELITY AND THEIR MEASUREMENTS

UNIT:-1 NUMBER SYSTEMS

INTRODUCTION:-

Binary number systems and digital codes are very essential in computers and digital electronics

In this unit we will study different types of number systems such as binary, decimal,octal,hexadecimal,excess-3-code,BCD,GRAY code etc. Also we will study how to convert these numbers from one form of number system into another i.e.
Interconversion of number system.
Also we will study 1's compliment representation and 2's compliment representation of numbers. Then we will study binary arithmetic i.e. addition, subtraction, multiplication and division of binary numbers. Having the knowledge of "Binary Arithmetic" we can basically understand the working of computers or other digital systems.

DECIMAL NUMBER SYSTEM:-

Decimal numbers are the numbers that we use in our daily life. This number system has digits used from $0,1,2,3,4,5,6,7,8$ and 9 , therefore BASE or RADIX of decimal number system is 10.

Ex:- (534) $\mathbf{1 0}_{10}$

In above example 534 is the number and 10 is the base of the number system used.

How to find Equivalent Weight of a Decimal Digit:-

Decimal number system is a "weighted number system" that means each digit or number of the decimal number system have a fixed weightage .Lets study how to find out the Equivalent Weight of a Decimal Digit .

The weightage of Decimal numbers starts from $10^{0}, 10^{1}, 10^{2}, 10^{3} \ldots$. so on from right to left for whole numbers and for fractional numbers negative powers of 10 from left to right

$$
\text { i.e } 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4} \ldots \text {.so on }
$$

It can be shown as below

$$
\ldots \ldots .10^{3}, 10^{2}, 10^{1}, 10^{0} \cdot 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4} \ldots
$$

The point separating fractional and whole part of the numbers is the Decimal Point.

For example :-

In the number (432) ${ }_{10}$, Right most digit 2 is called as the Least significant bit i.e. L.S.B. having the lowest weightage, and the digit 4 is called as the most significant bit i.e. M.S.B. having the highest weightage.

The Equivalent weight of the above decimal number can be determined as the follow,

i.e. $400+30+2=432$ is the decimal number with its sum values of each digit.
Q. Calculate the weight of the digits of the following number.

1) $(65)_{10}$

$$
6 \times 10=60 \quad 5 \times 1=5
$$

i.e. Weight of digit 6 is $\mathbf{6 0}$ and weight of unit digit 5 is 5 .Therefore the number formed is, $60+5=65$.
2) $(23.5)_{10}$

Ans:-

i.e. $20+3+0.5=23.5$ is the number formed

Hence equivalent weight of the digit $\mathbf{2}$ is 20 , digit $\mathbf{3}$ is $\mathbf{3}$ and digit $\mathbf{5}$ is $\mathbf{0 . 5}$

Binary Numbers System :-Computer only knows language of Binary Number system therefore, Binary numbers are very essential in computer and digital codes. All the programming of the computer is done in the form of binary number system.

In Binary numbers only digits $\mathbf{0}$ and $\mathbf{1}$ are used. Hence Base or Radix of a binary number is 2.

Largest Binary number which can be formed using given " n " number of binary digits is given by, (2 $\mathbf{2}^{\mathrm{n}} \mathbf{- 1}$).
e.g. If $\mathbf{4}$ binary digits are given then Largest binary number formed is, Here $\mathbf{n}=\mathbf{4}$,
$\mathbf{2}^{4}-\mathbf{1}=16-1=\mathbf{1 5}$.
Hence, by using 4 binary digits a largest binary number 15 can be formed.
e.g. (110001) $)_{2}$ is a binary number. Here 2 is the base of the given binary number.

In this given binary number $\mathbf{(1 1 0 0 0 1}^{(102} \mathbf{2}_{2}$ the rightmost digit 1 is having the least weightage called as the least significant bit i.e. L.S.B. and the left most digit 1 is having the highest weightage and called as the most significant bit i.e. M.S.B.

Binary number system is also a weighted number system. i.e. Each digit of a binary number is having a fixed weightage. Weightage of the binary number increases from right to left for the whole number as,
$\ldots . .2^{3} \longleftarrow \quad 2^{2} \longleftarrow \quad 2^{1} \longleftarrow \quad 2^{0}$
For the fractional part of binary number weightage decreases from left to right as,

$$
.2^{-L} \longrightarrow 2^{-2} \longrightarrow 2^{-3} \longrightarrow \quad 2^{-4} \ldots \ldots .
$$

Equivalent Weight of a Binary Number :-

If a given binary number is $(\mathbf{1 1 0 1})_{2}$ then its equivalent weight is,

Hence, the equivalent weight of right most digit i.e. LSB is $\mathbf{2}^{\mathbf{0}}=\mathbf{1}$
And the equivalent weight of the left most digit i.e MSB is $2^{3}=8$

DECIMAL NUMBER	BINARY NUMBER
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

BINARY ARITHEMETIC :-

In the binary arithmetic we will study ,
(a) Addition of two Binary Numbers
(b) Subtraction Of Two Binary Numbers
(c) Multiplication Of Two Binary Numbers
(d) Division Of Two Binary Numbers

Now first we will study how to add two binary numbers ,

(a) Addition of two Binary Numbers

Rules Of Binary Addition :

		CARRY		
$\mathbf{0}+$	$\mathbf{0}=$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0}$	+	$\mathbf{1}=$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	+	$\mathbf{0}=$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	+	$\mathbf{1}=$	$\mathbf{1}$	$\mathbf{0}$

Ex:- (1) -

$$
\begin{aligned}
& 11 \longrightarrow \text { CARRY } \\
& 1001 \\
& +11 \\
& 1100 \longrightarrow \text { SUM }
\end{aligned}
$$

Ex:- (2) -

$$
\begin{gathered}
1000 \\
+10
\end{gathered} \quad \begin{aligned}
& \\
& \hline 1010
\end{aligned} \quad \text { SUM }
$$

Ex:- (3) -

$$
\begin{gathered}
1100 \\
\begin{array}{r}
+11
\end{array} \\
\hline 1111
\end{gathered} \text { SUM }
$$

(b) Subtraction of two Binary Numbers

Rules Of Binary Subtraction:

						SUBTRACTION BORROW
$\mathbf{0}$	-	$\mathbf{0}=$	$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{0}$	-	$\mathbf{1}=$	$\mathbf{1}$	$\mathbf{1}$		
$\mathbf{1}-$	$\mathbf{0}=$	$\mathbf{1}$	$\mathbf{0}$			
$\mathbf{1}-$	$\mathbf{1}=$	$\mathbf{0}$	$\mathbf{0}$			

Ex:- (1) -

$$
\begin{array}{r}
1011 \\
\begin{array}{r}
-11 \\
\hline 1000
\end{array} \text { subTRACTION }
\end{array}
$$

Ex:- (2) -
1111
$\frac{-100}{1011} \longrightarrow$ SUBTRACTION

Ex:- (3) - Subtract (11$)_{2}$ from (110$)_{2}$

Ex:- (3) - Subtract ($\mathbf{1 0 0})_{2}$ from ($\left.\mathbf{1 0 0 0}\right)_{2}$

$$
\begin{array}{rrrr}
10 & \longrightarrow & \text { BORROW } \\
10 & 0 & 0 & \\
-1 & 0 & 0 \\
\hline 1 & 0 & 0 &
\end{array}
$$

(c) Multiplication of two Binary Numbers :-

Rules Of Binary Multiplication:

$$
\begin{array}{llll}
\mathbf{0} & \mathbf{x} & \mathbf{0}= & \mathbf{0} \\
\mathbf{0} & \mathbf{x} & \mathbf{1}= & \mathbf{0} \\
\mathbf{1} & \mathbf{x} & \mathbf{0}= & \mathbf{0} \\
\mathbf{1} & \mathbf{x} & \mathbf{1}= & \mathbf{1}
\end{array}
$$

Ex (1):- 1110

$\begin{array}{r}\mathrm{x} 1 \\ \hline 11 \\ \hline\end{array}$
$\begin{array}{rrrr}+1 & 1 & 0 & x \\ 1 & 0 & 0 & 1\end{array}$

Ex (2):- $1 \begin{array}{llll}1 & 1 & 0\end{array}$

$$
\begin{array}{r}
\mathrm{x} 100 \\
\cline { 2 - 3 } 0 \\
+11110 \mathrm{x} \\
\hline 1111000
\end{array}
$$

Ex (3):-

$$
\begin{array}{r}
1000 \\
x 100 \\
\hline 000 \\
+1000 x \\
\hline 1000
\end{array}
$$

(d) Division of two Binary Numbers :-

Ex. 1:- $1000 \div 10$

Ans:-

Ex. 2:- $1100 \div 11$
Ans:-

Ex. 3:- $1111 \div 11$
Ans:-

Conversion Of Decimal Numbers to Binary numbers :-
There are two methods by which we can convert the given decimal number to its equivalent binary numbers,

1) Successive Division Method

2) Adding of Weights Method

We will first study how to convert a given decimal number to its equivalent binary number by Successive Division Method.

1)Conversion Of Decimal Numbers to Binary numbers by Successive Division Method :-

To convert a given decimal number to its equivalent binary number by successive division method following steps are to be followed,

STEP (1) :- Divide the given decimal number by 2
STEP (2) :-Then the first reminder generated is our first digit(L.S.B.) of a required binary number

STEP (3) :-Now divide the quotient by 2 and write down the reminder as the second digit of required binary number

STEP (4) :-Repeat above step no(3) until we get the Quotient "0" at last
STEP (5) :-Then the last reminder generated after getting the reminder zero is the last digit (M.S.B.) of our required binary number

STEP (6) :-Now write down all the reminders generated from right to left, starting from LSB To MSB

Ex: Convert the given Decimal number to its Binary equivalent
(1) (23) $)_{10} \longrightarrow(?)_{2}$

Number	Quotient	Reminder	Steps To be followed
$\frac{23}{2}$	11	$\begin{gathered} 8 \\ \text { (LSB) } \end{gathered}$	Divide the number 23 by 2 and write reminder as LSB of a required Binary Number
$\frac{11}{2}$	5	1	Now divide the quotient 11 by 2, Reminder is 1
$\frac{5}{2}$	2	1	Divide the quotient 5 by 2, Reminder is 1
$\frac{2}{2}$	1	0	Divide the quotient 2 by 2, Reminder is 0
$\frac{1}{2}$	0	$\begin{array}{\|c\|} \hline 8 \\ \text { (MSB) } \end{array}$	Divide the quotient 1 by 2, Reminder is 1 and this last reminder is our MSB of required binary

Write down the above reminders produced from top to bottom. First reminder is LSB and last reminder is MSB of required binary number,
i.e. $\left(\begin{array}{ccccc}1 & 0 & 1 & 1 & 1\end{array}\right)_{2}$
MSB
LSB

Ans:- $(\mathbf{2 3})_{10}=(\mathbf{1 0 1 1 1})_{2}$
(2) (17) $)_{10} \longrightarrow(?)_{2}$

Number	Quotient	Reminder	Steps To be followed
$\frac{17}{2}$	8	$\begin{gathered} 8 \\ \text { (LSB) } \end{gathered}$	Divide the number 17 by 2 and write reminder as LSB of a required Binary Number
$\frac{8}{2}$	4	0	Now divide the quotient 8 by 2, Reminder is 0
$\frac{4}{2}$	2	0	Divide the quotient 4 by 2, Reminder is 0
$\frac{2}{2}$	1	0	Divide the quotient 2 by 2, Reminder is 0
$\frac{1}{2}$	0	$\begin{array}{\|c\|} \hline 8 \\ \text { (MSB) } \end{array}$	Divide the quotient 1 by 2, Reminder is 1 and this last reminder is our MSB of required binary

Write down the above reminders produced from top to bottom. First reminder is LSB and last reminder is MSB of required binary number,

Ans:- $(\mathbf{1 7})_{10}=(\mathbf{1 0 0 0 1})_{2}$

Method-2:- Adding of Weights method

To convert a given decimal number to its equivalent binary number, write down the given decimal number in the form of addition of numbers which are whole powers of 2 .

Then write down the position of that numbers as 1 if number is absent then write down 0 at the respective positions.

Ex.(1) (15) ${ }_{10}=(?)_{2}$

Ans:-

Write down 15 in the form of whole powers of 2

$$
\begin{aligned}
15 & =8+4+2+1 \\
& =2^{3}+2^{2}+2^{1}+2^{0}
\end{aligned}
$$

2^{0} is the unit place or LSB of the required binary number
2^{1} is the $2^{\text {nd }}$ place the required binary number
2^{2} is the $3^{\text {rd }}$ place the required binary number
2^{3} is the $4^{\text {th }}$ place or the MSB of the required binary number

Hence the required binary equivalent of the given decimal number 15 is ,

1	1	1	1
MSB	$3^{\text {rd }}$ place	$2^{\text {nd }}$ place	LSB

$(15)_{10}=(1111)_{2}$

Ex:- 2) (33) ${ }_{10}=(\text { ? })_{2}$
Ans:-

$$
\begin{aligned}
33 & =32+1 \\
& =2^{5}+2^{0}
\end{aligned}
$$

Hence Unit place or LSB and MSB positions are only present in the required binary number and write down " 0 " at the positions which are absent in above addition of weights

$$
\text { i.e. }(33)_{10}=(100001)_{2}
$$

Conversion Of Binary Numbers to Decimal numbers :-

To convert Binary Numbers to Decimal numbers just add the equivalent weights of all binary digits.

Ex.1-(1010) $)_{2}=(?)_{10}$
Ans:
First write down the digits of the given binary numbers, then add their equivalent weights

Addition of equivalent weights $=$ Required decimal numbers

$$
\begin{aligned}
& =8+0+2+0 \\
& =(10)_{10}
\end{aligned}
$$

Ans: $-(1010)_{2}=(10)_{10}$

Ex.2-(1110) $)_{2}=(?)_{10}$
Ans:
First write down the digits of the given binary numbers, then add their equivalent weights

Addition of equivalent weights $=$ Required decimal numbers

$$
\begin{aligned}
& =8+4+2+0 \\
& =(14)_{10}
\end{aligned}
$$

Ans: $-(1110)_{2}=(14)_{10}$

Octal Number System:-

In Octal number system 8 digits are used from $\mathbf{0 , 1 , 2 , 3 , 4 , 5 , 6}$ and 7 ,hence the base of octal numbers is 8 .

Each Octal digit is representing a group of three binary digits
Ex:- (267) $\mathbf{8}_{8}$
In above example 267 is the octal number and $\mathbf{8}$ is the base of the number system used.

DECIMAL NUMBER	BINARY NUMBER	OCTAL NUMBER
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7
8	001000	10
9	001001	11
10	001010	12
11	001011	13
12	001100	14
13	001101	15
14	001110	16
15	001111	17

How to find Equivalent Weight of a Octal Digit:-

Octal number system is a "weighted number system" that means each digit or number of the Octal number system have a fixed weightage .Lets study how to find out the Equivalent Weight of a Octal Digit .

The weightage of Octal numbers starts from $8^{0}, 8^{1}, 8^{2}, 8^{3} \ldots$. so on from right to left for whole numbers and for fractional numbers negative powers of 8 from left to right
i.e $8^{-1}, 8^{-2}, 8^{-3}, 8^{-4} \ldots$.so on

It can be shown as below
$\ldots \ldots .8^{3}, 8^{2}, 8^{1}, 8^{0} .8^{-1}, 8^{-2}, 8^{-3}, 8^{-4} \ldots$.
The point separating fractional and whole part of the numbers is the Octal Point.

For example :-

In the number (471)8,
Right most digit $\mathbf{1}$ is called as the Least significant bit i.e. L.S.B. having the lowest weightage, and the digit 4 is called as the most significant bit i.e. M.S.B. having the highest weightage.

The Equivalent weight of the above Octal number can be determined as the follow,

i.e. $\mathbf{4 0 0}+\mathbf{7 0} \mathbf{+ 1}=\mathbf{4 7 1}$ is the $\mathbf{O c t a l}$ number with its sum values of each digit.

Conversion Of Octal Numbers to Decimal numbers :-To convert a given Octal number to its decimal equivalent we have to add the equivalent weights of the each Octal digit

Ans:-

i.e. Weight of digit 2 is 16 and weight of unit digit 5 is 5 .

Therefore the number formed is , $16+5=(21)_{10}$
Ans. (25) ${ }_{8}=(21)_{10}$

Ex.2) $(364)_{8}=(?)_{10}$

Ans:-

i.e. $192+\mathbf{4 8}+\mathbf{4}=\mathbf{2 4 4}$ is the required decimal number of given octal number Ans. (364) $\left.\mathbf{8}_{\mathbf{~}}=\mathbf{(2 4 4}\right)_{10}$

Conversion Of Octal Number to Binary Number :-
Each Octal digit is representing a group of three binary digits. So to convert a given octal number to its Binary equivalent, replace each Octal digit by its group of three binary digits

BINARY NUMBER	OCTAL NUMBER
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Ex.1) (56) $)_{8}=(?)_{2}$
Ans:-

$(56)_{8}=(101110)_{2}$

Ex.2) (123) $)_{8}=(\text { ? })_{2}$
Ans:-

i.e. $(\mathbf{1 2 3})_{8}=\left(\begin{array}{lll}001 & 010 & 011\end{array}\right)_{2}$

Conversion Of Binary Number to Octal Number :-

A Group of three binary digits is representing an Octal Digit So to convert a given Binary number to its Octal equivalent, replace the group of three binary digits by its Octal Equivalent

BINARY NUMBER	OCTAL NUMBER
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Ex.1) (101011$)_{2}=(?)_{8}$
Ans:-
Step 1 :- First write down the given binary digits

$$
\begin{array}{llllll}
1 & 0 & 1 & 0 & 1 & 1
\end{array}
$$

Step 2 :- Now make a group of three binary digits from right to left

Step 3 :- Each group of these three binary digits is representing an Octal digit

Hence, the required octal number is (53)s

$$
\text { Ans:- }(101011)_{2}=(53)_{8}
$$

Ex.2) (01101001$)_{2}=(?)_{8}$
Ans:-
Step 1 :- First write down the given binary digits
$\begin{array}{llllllll}0 & 1 & 1 & 0 & 1 & 0 & 0 & 1\end{array}$
Step 2 :- Now make a group of three binary digits from right to left
$\begin{array}{llllllllll}0 & 0 & 1 & & 1 & 0 & 1 & & 0 & 0\end{array} \quad 1$

Step 3 :- Each group of these three binary digits is representing an Octal digit

Hence, the required octal number is $\mathbf{(1 5 1})_{8}$

$$
\text { Ans:- }(01101001)_{2}=(151)_{8}
$$

Conversion Of Decimal Numbers to Octal numbers :-

Ex.(1):-(39$)_{10}=(?)_{8}$
To convert a given decimal number into its octal equivalent following steps are to be followed,

Step 1 :-First convert a given decimal number into its binary equivalent number by successive division method.

$\frac{\text { Number }}{}$	Quotient	Reminder	Steps To be followed
$\frac{39}{2}$	19	1 $($ LSB $)$	Divide the number 39 by 2 and write reminder as LSB of a required Binary Number
$\frac{19}{2}$	9	1	
$\frac{9}{2}$	4	1	
$\frac{4}{2}$	2	0	
$\frac{2}{2}$	1	0	Divide the quotient 9 by 2, Reminder is 1
$\frac{1}{2}$	0	Divide the quotient 4 by 2, Reminder is 0 (MSB) no.	Divide the quotient 1 by 2, Reminder is 1 and this last reminder is our MSB of required binary

Step 2 :- Then write down the given binary digits
$\begin{array}{llllll}1 & 0 & 0 & 1 & 1 & 1\end{array}$
Step 3 :- Now make a group of three binary digits from right to left

Step 4 :- Each group of these three binary digits is representing an Octal digit

Ans:- $(\mathbf{3 9})_{10}=(47)_{8}$

Ex.(1):-(33$)_{10}=(?)_{8}$
To convert a given decimal number into its octal equivalent following steps are to be followed,

Step 1 :-First convert a given decimal number into its binary equivalent number by successive division method.

Number	Quotient	Reminder	Steps To be followed
$\frac{33}{2}$	16	$\begin{aligned} & 1 \\ & (\text { LSB }) \end{aligned}$	Divide the number 33 by 2 and write reminder as LSB of a required Binary Number
$\frac{16}{2}$	8	0	Now divide the quotient 16 by 2, Reminder is 0
$\frac{8}{2}$	4	0	Divide the quotient 8 by 2, Reminder is 0
$\frac{4}{2}$	2	0	Divide the quotient 4 by 2, Reminder is 0
$\frac{2}{2}$	1	0	Divide the quotient 2 by 2, Reminder is 0
$\frac{1}{2}$	0	1 (MSB) no.	Divide the quotient 1 by 2, Reminder is 1 and this last reminder is our MSB of required binary

$(33)_{10}=(100001)_{2}$
Step 2 :- Then write down the given binary digits
$\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 1\end{array}$
Step 3 :- Now make a group of three binary digits from right to left

Step 4 :- Each group of these three binary digits is representing an Octal digit

[^0]
Hexadecimal Number System :-

Hexadecimal number system is an Alphanumeric weighted number system.
In hexadecimal number system digits $\mathbf{0 , 1 , 2 , 3 , 4 , 5 , 6 , 7}, \mathbf{8}, \mathbf{9}$ and alphabets $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ and \mathbf{F} are used.

So in total $\mathbf{1 6}$ symbols are used to represent a Hexadecimal number. Hence the base or radix of the Hexadecimal number is $\mathbf{1 6}$

DECIMAL NUMBER	BINARY NUMBER	HEXADECIMAL NUMBER
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	B
12	1100	C
13	1101	D
14	1110	E
15	1111	F

How to find Equivalent Weight of a Hexadecimal Digit:-

Hexadecimal number system is a "weighted number system" that means each digit or number of the Hexadecimal number system have a fixed weightage .Lets study how to find out the

Equivalent Weight of a Octal Digit .

The weightage of Hexadecimal numbers starts from $\mathbf{1 6}^{\mathbf{0}}, \mathbf{1 6}^{\mathbf{1}}, \mathbf{1 6}^{\mathbf{2}}, \mathbf{1 6}^{\mathbf{3}} \ldots$. . so on from right to left for whole numbers and for fractional numbers negative powers of 16 from left to right
i.e $\mathbf{1 6}^{-1}, \mathbf{1 6}^{-2}, \mathbf{1 6}^{-3}, 16^{-4} \ldots$. so on

It can be shown as below
$\ldots . .16^{3}, 16^{2}, 16^{1}, 16^{0} .16^{-1}, 16^{-2}, 16^{-3}, 16^{-4} \ldots$.
The point separating fractional and whole part of the numbers is the Hex. Point.

For example :-

In the number ($\mathbf{1 2 A})_{16}$,
Right most ' \mathbf{A} ' is called as the Least significant bit i.e. L.S.B. having the lowest weightage, and the digit 1 is called as the most significant bit i.e. M.S.B. having the highest weightage.

The Equivalent weight of the above Hexadecimal number can be determined as the follow,

i.e. $\mathbf{2 5 6}+\mathbf{3 2}+\mathbf{1 0}=\mathbf{2 9 8}$ is the Hexadecimal number with its sum values of each digit.

Conversion Of Hexadecimal Number System To Decimal Number System:-

To Convert a given Hexadecimal Number To Decimal Number we have to add the equivalent weights of the each Hexadecimal digit

Ex.1) (11) $)_{16}=(?)_{10}$
Ans:-

Therefore the number formed is , $16+1=(17)_{10}$
$(11)_{16}=(17)_{10}$

Ex.2) (2A5 $)_{16}=(?)_{10}$

Therefore the number formed is, $512+160+5=(677)_{10}$

Conversion Of Decimal Number System To Hexadecimal Number System:A group of four binary digits represents a Hexadecimal digit

BINARY NUMBER	HEXADECIMAL NUMBER
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	8
1000	A
1001	B
1010	C
1011	D
1100	E
1101	F
1110	
1111	9

Ex.1:- (67$)_{10}=(?)_{16}$

To convert a given decimal number into its Hexadecimal equivalent following steps are to be followed,

Step 1 :-First convert a given decimal number into its binary equivalent number by successive division method.

$\frac{\text { Number }}{}$	Quotient	Reminder	Steps To be followed
$\frac{67}{2}$	33	1 $($ LSB $)$	Divide the number 67 by 2 and write reminder as LSB of a required Binary Number
$\frac{33}{2}$	16	1	Now divide the quotient 33 by 2, Reminder is 1
$\frac{16}{2}$	8	0	Divide the quotient 16 by 2, Reminder is 0
$\frac{8}{2}$	4	0	Divide the quotient 8 by 2, Reminder is 0
$\frac{4}{2}$	2	0	Divide the quotient 4 by 2, Reminder is 0
$\frac{2}{2}$	1	(MSB)	Divide the quotient 1 by 2, Reminder is 1 this last reminder is our MSB of required binary
$\frac{1}{2}$	0	no.	

Step 2 :- Then write down the given binary digits
$\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 1 & 1\end{array}$
Step 3 :- Now make a group of four binary digits from right to left

Step 4 :- Each group of these four binary digits is representing an Hexadecimal digit

Ex.2:- ($\mathbf{8 8})_{10}=(\mathbf{~})_{16}$
To convert a given decimal number into its Hexadecimal equivalent following steps are to be followed,

Step 1 :-First convert a given decimal number into its binary equivalent number by successive division method.

Number	Quotient	Reminder	Steps To be followed
$\frac{88}{2}$	44	$\begin{array}{\|l\|} \hline 0 \\ (\text { LSB }) \end{array}$	Divide the number 88 by 2 and write reminder as LSB of a required Binary Number
$\frac{44}{2}$	22	0	Now divide the quotient 44 by 2, Reminder is 0
$\frac{22}{2}$	11	0	Divide the quotient 22 by 2, Reminder is 0
$\frac{11}{2}$	5	1	Divide the quotient 11 by 2, Reminder is 1
$\frac{5}{2}$	2	1	Divide the quotient 5 by 2, Reminder is 1
$\frac{2}{2}$	1	0	Divide the quotient 2 by 2, Reminder is 0
$\frac{1}{2}$	0	1 (MSB) no.	Divide the quotient 1 by 2, Reminder is 1 this last reminder is our MSB of required binary

Step 2 :- Then write down the given binary digits
$\begin{array}{lllllll}1 & 0 & 1 & 1 & 0 & 0 & 0\end{array}$
Step 3 :- Now make a group of four binary digits from right to left

Step 4 :- Each group of these four binary digits is representing a Hexadecimal digit

Ans:- ($\mathbf{8 8})_{10}=(58)_{16}$

Conversion Of Hexadecimal Number System To Binary Number System:-

Each hexadecimal digit is representing a group of four binary digits. So to convert a given hexadecimal number to its equivalent binary number write down the corresponding binary group of each hexadecimal digit.

BINARY NUMBER	HEXADECIMAL NUMBER
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	A
1001	B
1010	C
1011	D
1100	E
1101	F
1110	
1111	

Ex.(1):- (F275) $\mathbf{1 6}_{16}=(\boldsymbol{P})_{2}$
Ans:

Ans:- $(\mathbf{F} 275)_{16}=(\mathbf{1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 1})_{2}$

Ex.(2):- (B26A) $\mathbf{1 6}=(\text { ? })_{2}$
Ans:

Conversion Of Binary Number System To Hexadecimal Number System:-

A group of four binary digits represents a Hexadecimal digit. So to convert the Binary number to its equivalent Hexadecimal number, replace the Each group of four binary numbers to its equivalent Hexadecimal digit.

Ex.1:- $(\mathbf{1 0 1 0 0 0 1 0 0 0 1 1})_{2}=(?)_{16}$
Ans:
First write down the given Binary number and make a group of four binary digits from right to left

Now each group of four binary digits is representing a Hexadecimal digit
1010

A
0010 0011

3

```
Ans:- (101000100011)2 = ( A23 )}\mp@subsup{)}{16}{
```


Conversion Of Hexadecimal Number System To Octal Number System:-

To convert a given Hexadecimal number to its equivalent Octal number first convert the given Hexadecimal number to its equivalent binary number.

Then convert that Binary number to octal number by making group of three binary digits from right to left.

DECIMAL NUMBER	BINARY NUMBER	OCTAL NUMBER	HEXADECIMAL NUMBER
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

$$
\text { Ex:-1) }(77)_{16}=(?)_{8}
$$

Ans: First convert the given Hexadecimal number to its equivalent binary number

Write down above binary number and make a group of three binary numbers from right to left

Ans: $(77)_{16}=(167)_{8}$

Ex:-2) (C307) $\mathbf{1 6}^{\mathbf{C}}=(\text { ? })_{8}$
Ans: First convert the given Hexadecimal number to its equivalent binary number.

Write down above binary number and make a group of three binary numbers from right to left

Ans: $(\mathrm{C} 307)_{16}=(141407)_{8}$

Conversion Of Octal Number System To Hexadecimal Number System:-

Step-1: To convert the given Octal number to its equivalent Hexadecimal number, first convert the given octal number to its binary equivalent

Step-2: Then make a group of four binary digits from right to left.

Step-3: Now each group of four binary numbers represents a hexadecimal digit
Ex. (1):- (564) $\mathbf{8}_{\mathbf{~}}=\left(\begin{array}{l}\text { ? } \\ 16\end{array}\right.$
Ans :
First convert the given octal number to its binary equivalent

Then make a group of four binary digits from right to left

Ex. (2):- (777) $\mathbf{8}_{8}=(?)_{16}$
Ans :
First convert the given octal number to its binary equivalent

Then make a group of four binary digits from right to left

Ans:- $\begin{array}{cc}1 & F \\ (777)_{8}=(\mathbf{1 F F})_{16} & \end{array}$

BINARY CODED DECIMAL (BCD) NUMBER SYSTEM:-

In Binary Coded Decimal (BCD) number system each decimal digit is represented as the group of 4 bit binary number. In the group of 4 bit Binary digits MSB is having weight $\mathbf{8}$,then $3^{\text {rd }}$ bit is having weight $\mathbf{4}, 2^{\text {nd }}$ bit having weight $\mathbf{2}$ and LSB is having weight $\mathbf{1}$.

Hence BCD code is also called as 8421 number system

DECIMAL NUMBER	BCD or 8421 Code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	00010000
11	00010001
12	00010011
13	00010100
14	00010101
15	

Ex.1) (237) ${ }_{10}=(\text { ? })_{B C D}$
Ans: In the conversion of Decimal to BCD number system each decimal digit is represented as the $\mathbf{4}$ bit binary number as,

2	3	7
\downarrow		\downarrow
0010	\downarrow	\downarrow
	0011	0111

Ans:- $(\mathbf{2 3 7})_{10}=(\mathbf{0 0 1 0} 00110111)_{\text {BCD }}$

Ex.2) (3468) $)_{10}=(?)_{B C D}$

Ans: In the conversion of Decimal to BCD number system each decimal digit is represented as the $\mathbf{4}$ bit binary number as,

Ans:- $\mathbf{(3 4 6 8})_{10}=(0011010001101000)_{\text {BCD }}$

Excess-3-Code:

Excess-3-Code is a Non weighted number system. In which we add three (0011) to a given decimal number or in the number which we are asked to convert into Ex-3 code.

DECIMAL NUMBER	BCD or 8421 Code	Excess-3-code
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

Ex. (1):- (45$)_{10}=(?)_{\text {Ex-3 }}$
Ans:-

Excess-3-code-	$\frac{+0011}{}$	+0011
1000		

$$
(45)_{10}=(01111000)_{\text {Ex- }-3}
$$

Ex. (2) :- (384$)_{10}=(?)_{\text {ex-3 }}$
Ans:-

Add 3:- $\frac{+0011}{0110} \xrightarrow{+0011} \frac{+0011}{1011} \xrightarrow{0111}$
$(384)_{10}=(011010110111)_{\text {Ex-3 }}$

GRAY Code :-

GRAY code is the non weighted number system.
In GRAY code, we change only one bit at a time
Conversion Of Binary to GRAY code :-
Ex:- 1) (110111 $)_{2}=(?)_{\text {GRAY }}$
Ans:-

Step 1:- First write down the digits of the given binary numbers separately
Step 2 :-Then write down MSB of the given binary number as it is
Step 3 :-Now add the pair of adjacent bits of the given binary numbers and discard the carry generated

Ans :-($\mathbf{1 1 0 1 1 1})_{2}=(101100)_{\text {GRAY }}$

Ex:- 2) (100110$)_{2}=(?)_{\text {GRAY }}$
Ans:-

Ans :- $(\mathbf{1 0 0 1 1 0})_{2}=(110101)_{\text {GRAY }}$

Conversion Of GRAY to BINARY code :-

Ex:-1) ($\mathbf{1 0 0 1 0 0})_{\text {GRAY }}=(?)_{2}$
Ans:-

Step 1:- First write down the digits of the given GRAY code separately
Step 2 :-Then write down MSB of the given GRAY Code as it is
Step 3 :-Now diagonally add the Binary digit generated to the adjacent bit of the given GRAY Code and discard the carry generated

Ans:- $(100100)_{\text {GRAY }}=(?)_{2}$

Ex:- 2) ($\mathbf{1 1 1 0 0 0})_{\text {GRAY }}=(?)_{2}$
Ans:-

1
1
MSB discard carry

Step 1:- First write down the digits of the given GRAY code separately
Step 2 :-Then write down MSB of the given GRAY Code as it is
Step 3 :-Now diagonally add the Binary digit generated to the adjacent bit of the given GRAY Code and discard the carry generated

[^1]
1's Compliment Representation :-

To get One's Compliment of a given binary number, replace ' $\mathbf{1}$ ' of the given binary number by ' $\mathbf{0}$ ' and ' $\mathbf{0}$ ' of the given binary number by ' $\mathbf{1}$ '

Ex.1:- Find the $\mathbf{1}^{\text {'s }}$ Compliment of (1100011) $)_{2}$

Ans:- Replace 1 by o and 0 by 1 of the given binary number to get the $\mathbf{1}^{\text {'s }}$ Compliment complement

Ans:- $\boldsymbol{1}^{\text {'s }}$ Compliment of (1100011$)_{2}$ is (0011100)

Ex.2:- Find the $\mathbf{1}^{\prime}$ ' Compliment of (1010101$)_{2}$

Ans:- Replace 1 by o and 0 by 1 of the given binary number to get the $\mathbf{1}^{\text {'s }}$ Compliment complement

Ans:- 1^{\prime} 's Compliment of (1010101$)_{2}$ is (0101010)

2's Compliment Representation :-

To get Two's Compliment of a given binary number, First find out $\mathbf{1}^{\mathbf{\prime}}$ Compliment of the given binary number then add ' 1 ' to the obtained 1 's Compliment

Ex.1:- Find the 2 ${ }^{\text {'s }}$ Compliment of (1110001) $)_{2}$
Ans:- Replace 1 by o and 0 by 1 of the given binary number to get the $\mathbf{1}^{\text {'s }}$ Compliment complement

1 's Compliment of (1110001) $)_{2}$ is (0001110)
Now to get $\mathbf{2}^{\text {'s }}$ Compliment add ' $\mathbf{1}$ ' to the above $\mathbf{1}^{\text {'s }}$ Compliment obtained

$$
\begin{array}{lllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 0 & & 1^{\prime s} \text { Compliment } \\
& & & & & & &
\end{array}
$$

$\begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 1 & 1\end{array} 2^{\prime}$'s Compliment
Ans:- 2's Compliment of (1110001$)_{2}$ is (0001111)

Ex.2:- Find the $\mathbf{2}^{\text {'s }}$ Compliment of (1000011$)_{2}$
Ans:- Replace 1 by o and 0 by 1 of the given binary number to get the $\mathbf{1}^{\text {'s }}$ Compliment complement

1^{\prime} 's Compliment of ($\left.\mathbf{1 0 0 0 0 1 1}\right)_{2}$ is (0111100)

Now to get $\mathbf{2}^{\text {'s }}$ Compliment add ' 1 ' to the above $\mathbf{1}^{\text {'s }}$ Compliment obtained

Ans:- $\mathbf{2}^{\text {'s }}$ Compliment of (1000011$)_{2}$ is $\left(\begin{array}{llllll}0 & 1 & 1 & 1 & 1 & 0\end{array}\right)$

Unit-2

LOGIC GATES

In this unit we will study ,
AND GATE
OR GATE
NOT GATE
NAND GATE
NOR GATE
EX-OR GATE
EX-NOR GATE
UNIVERSAL PROPERTIES OF NAND GATE AND NOR GATE
BOOLEAN OPERATIONS
LOGIC EXPRESSIONS FOR 2,3 AND 4 INPUTS
LAWS OF BOOLEAN ALGEBRA
DE'MORGEN'S THEOREMS
SOP FORM OF BOOLEAN EXPRESSIONS
SIMPLIFICATION OF BOOLEAN EXPRESSION USING K-MAPS(UP TO 4 VARIABLES)
HALF ADDER
FULL ADDER
First we will study the basic gates as NOT , AND , OR gates, their Logic Symbol , it's Logic Operation ,TRUTH Tables

BASIC GATES :-

NOT , AND , OR are called as the BASIC GATES

1)NOT Gate :-

NOT Gate is also called as INVERTER GATE , because whatever input given to the NOT gate it Inverts the given input.

NOT GATE has only ONE INPUT and ONE OUTPUT
Logical Symbol of the NOT GATE is shown here,

LOGIC SYMBOL OF NOT GATE

Operation Of NOT GATE :-

Operation Of NOT gate is given as, $Y=\overline{\mathrm{X}}$

Where, ' \mathbf{X} ' is Input given to the NOT gate and ' \mathbf{Y} ' is OUTPUT provided by the NOT gate i.e. If we provide INPUT HIGH or ' $\mathbf{1}$ ' to the NOT gate then it gives OUTPUT LOW or ' $\mathbf{0}$ ' and If we provide INPUT LOW or ' $\mathbf{0}$ ' to the NOT gate then it gives OUTPUT HIGH or ' $\mathbf{1}$ ' TRUTH Table of NOT GATE is given as,

INPUT	OUTPUT
$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$

2)AND Gate :-

AND GATE is one of the basic gates
It is used for MULTIPLICATION operation which is shown by $\operatorname{dot}(\bullet)$
AND GATE have TWO INPUTS and ONE OUTPUT
Logical Symbol of the AND GATE is shown here,

LOGIC SYMBOL OF AND GATE

TRUTH Table Of 2 INPUT AND gate is given below :-

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A} \bullet \mathbf{B}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Operation Of AND GATE :-

If one of the INPUTS of the AND gate is LOW or ' $\mathbf{0}$ ' then OUTPUT of the AND gate is LOW or ' 0 '

AND gate gives HIGH or ' $\mathbf{1}$ ' OUTPUT only when BOTH the INPUTS are HIGH or ' $\mathbf{1}$ ', TRUTH Table Of 3 INPUT AND gate is given below :-

INPUTS			OUTPUT
A	\mathbf{B}	\mathbf{C}	$\mathbf{Y}=\mathbf{A} \bullet$ B•C
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

3) OR Gate :-

OR GATE is one of the basic gates
It is used for ADDITION operation which is shown by $(+)$
OR GATE have TWO INPUTS and ONE OUTPUT
Logical Symbol of the OR GATE is shown here,

LOGIC SYMBOL OF OR GATE

TRUTH Table of AND gate is given below :-

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A}+\mathbf{B}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Operation Of AND GATE :-

If one of the INPUTS of the OR gate is HIGH or ' $\mathbf{1}$ ' then OUTPUT of the OR gate is HIGH or ' 1 '

OR gate gives LOW or ' $\mathbf{0}$ ' OUTPUT only when BOTH the INPUTS are LOW or ' $\mathbf{0}$ '

TRUTH Table Of 3 INPUT OR gate is given below :-

INPUTS			OUTPUT
\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{Y}=\mathbf{A}+\mathbf{B}+\mathbf{C}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

DERIVED GATES:-

In this chapter up to now we have studied all the BASIC GATES. Now we will study some DERIVED GATES such as NAND gate and NOR gates.

NAND and NOR gates are called as the DERIVED gates because they are made up of some basic gates.

NAND GATE :-

NAND gate is one of the DERIVED gates .
NAND gate is the combination of one AND gate and one NOT gate.
NAND gate is also called as the UNIVERSAL gate, because all the basic gates can be formed by using only NAND gates.

Logical Symbol Of NAND gate :

LOGIC SYMBOL OF NAND GATE

TRUTH Table Of NAND gate :

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\overline{\mathbf{A} \bullet \mathbf{B}}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Logical Operation Of NAND gate :

NAND gate gives OUTPUT LOW or ' $\mathbf{0}$ ' only when both the INPUTS are HIGH or ' $\mathbf{1}$ ' otherwise NAND gate gives OUTPUT HIGH or ' $\mathbf{1}$ '

UNIVERSAL PROPERTIES OF NAND GATE :-

All the basic gates that is AND,OR,NOT can be constructed by using only NAND gates. Hence NAND gate is called as the UNIVERSAL gate

CONSRUCTION OF NOT GATE USING NAND GATES :-

NOT gate can be constructed by using only ONE NAND gate as follow,

TRUTH Table :-

INPUT	OUTPUT
$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$

If we provide 0 as an INPUT to the above NAND gate then we gate 1
And if we provide 1 as an INPUT then we get 0 as an OUTPUT
Hence the above Construction of the NAND gate is working like the NOT GATE

CONSRUCTION OF AND GATE USING NAND GATES :-

AND gate can be constructed by using TWO NAND gates connected together as follows,

TRUTH TABLE :-

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A} \bullet \mathbf{B}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

The above combination of NAND gates gives output HIGH only when both the inputs are HIGH otherwise it gives LOW OUTPUT. Hence above combination of TWO NAND gates working like the AND gate

CONSRUCTION OF OR GATE USING NAND GATES :-

OR gate can be constructed by using three NAND gates as follows,

TRUTH TABLE :-

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A}+\mathbf{B}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

The above combination of NAND gates gives output LOW when both the inputs are LOW otherwise it gives HIGH OUTPUT . Hence above combination of three NAND gates working like the OR gate

NOR GATE:-

NOR gate is also one of the DERIVRED gates .
NOR gate is the combination of ONE OR gate and ONE NOT gate
NOR gate is also called as the UNIVERSAL gate, because all the basic gates can be formed by using only NOR gates.

Logical Symbol Of NOR gate :-

TRUTH TABLE Of NOR gate :-

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\overline{\mathbf{A}+\mathbf{B}}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Logical Operation Of NOR gate :

NOR gate gives OUTPUT HIGH or ' $\mathbf{1}$ ' only when both the INPUTS are LOW or ' $\mathbf{0}$ ' otherwise NOR gate gives OUTPUT LOW or ' $\mathbf{0}$ '

UNIVERSAL PROPERTIES OF NAND GATE :-

All the basic gates that is AND,OR,NOT can be constructed by using only NAND gates .Hence NAND gate is called as the UNIVERSAL gate

CONSRUCTION OF NOT GATE USING NAND GATES :-
NOT gate can be constructed by using only ONE NOR gate as follow,

TRUTH Table :-

INPUT	OUTPUT
$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$

If we provide $\mathbf{0}$ as an INPUT to the above NOR gate then we gate $\mathbf{1}$
And if we provide $\mathbf{1}$ as an INPUT then we get $\mathbf{0}$ as an OUTPUT
Hence the above Construction of the NOR gate is working like the NOT GATE

CONSRUCTION OF OR GATE USING NOR GATES :-

OR GATE can be constructed by using combination of TWO NOR gates

The above combination of NOR gates gives output LOW when both the inputs are LOW otherwise it gives HIGH OUTPUT. Hence above combination of TWO NOR gates working like the OR gate

CONSRUCTION OF AND GATES USING NOR GATES :-
AND GATE is Constructed by using THREE NOR gates as follows

The above combination of NOR gates gives output HIGH only when both the inputs are HIGH otherwise it gives LOW OUTPUT. Hence above combination of THREE NOR gates working like the AND gate

TRUTH TABLE :-

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A}+\mathbf{B}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

EXCLUSIVE OR GATE (EX-OR gate) :-

LOGIC SYMBOL OF EX-OR GATE :-

LOGICAL OPERATION OF EX-OR GATE :-
$\mathbf{Y}=\mathbf{A} \bullet \overline{\mathbf{B}}+\overline{\mathbf{A}} \bullet \mathbf{B}$
TRUTH TABLE OF EX-OR GATE :-

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A \oplus} \mathbf{B}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

EXCLUSIVE OR GATE or EX-OR gate gives OUTPUT LOW or '0' when both the INPUTS provided are SAME i.e. both the INPUTS are ' $\mathbf{0}$ ' or both the INPUTS are ' $\mathbf{1}$ '

And EXCLUSIVE OR GATE or EX-OR gate gives HIGH OUTPUT or ' $\mathbf{1}$ ' when both the INPUTS provided are DIFFERENT i.e. one of the INPUT is ' $\mathbf{0}$ ' and other is ' $\mathbf{1}$ ' or one of the INPUT is ' $\mathbf{1}$ ' and other is ' $\mathbf{0}$ '

So here EXCUSIVE OR GATE is Different than the OR gate only in the FOURTH ROW

EXCLUSIVE NOR GATE (EX-NOR gate) :-

LOGIC SYMBOL OF EX-NOR GATE :-

LOGICAL OPERATION OF EX-NOR GATE :-

$$
\mathbf{Y}=(\mathbf{A} \bullet \mathbf{B})+(\overline{\mathbf{A}} \bullet \overline{\mathbf{B}})
$$

TRUTH TABLE OF EX-NOR GATE :-

INPUTS		OUTPUT
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\overline{\mathbf{A} \oplus \mathbf{B}}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

EXCLUSIVE NOR GATE or EX-NOR gate gives OUTPUT HIGH or ' 1 ' when both the INPUTS provided are SAME i.e. both the INPUTS are ' $\mathbf{0}$ ' or both the INPUTS are ' $\mathbf{1}$ '

And EXCLUSIVE NOR GATE or EX-NOR gate gives LOW OUTPUT or ' $\mathbf{0}$ ' when both the INPUTS provided are DIFFERENT i.e. one of the INPUT is ' $\mathbf{0}$ ' and other is ' $\mathbf{1}$ ' or one of the INPUT is ' $\mathbf{1}$ ' and other is ' $\mathbf{0}$ '

BOOLEAN ALGEBRA

INTRODUCTION :-

To study and analysis of the logical circuits, BOOLEAN ALGEBRA is used as a MATHEMATICAL TOOL .

Terms used in BOOLEAN ALGEBRA are , as follow,
VARIABLE :-
To represent values in LOGIC variables are used.
A variable can have value either ' 1 ' or ' 0 '
e.g. $\mathbf{A}=\mathbf{0}$ or $\mathbf{A}=\mathbf{1}$, where \mathbf{A} is the VARIABLE and ' $\mathbf{0}$ ' and ' $\mathbf{1}$ ' are the possible values of the VARIBLE ' \mathbf{A} '

COMPLIMENT :

''COMPLIMENT" is the INVERSE the value of the VARIABLE.
''COMPLIMENT" is represented as the BAR over the VARIABLE
e.g. If ' \mathbf{A} ' is any VARIABLE then its COMPLIMENT is represented as the $\overline{\mathbf{A}}$
and if $\mathbf{A}=\mathbf{0}$ then $\overline{\mathbf{A}}=\mathbf{1}$
and if $\mathbf{A}=\mathbf{1}$ then $\overline{\mathbf{A}}=\mathbf{0}$

LITERAL :

''LITERAL" is either VARIABLE or COMPLIMENT of the VARIABLE
BOOLEAN OPERATIONS :-

BOOLEAN ADDITION :-

BOOLEAN ADDITION is similar to the OR OPERATION
BOOLEAN ADDITION is shown by the symbol " + "
Rules of BOOLEAN ADDITION are ,
$\mathbf{0}+\mathbf{0}=\mathbf{0}$
$\mathbf{0}+\mathbf{1}=\mathbf{1}$
$1+0=1$
$1+1=1$

BOOLEAN MULTPLICATION :-
BOOLEAN MULTIPLICATION is similar to the AND OPERATION
BOOLEAN MULTIPLICATION is shown by the symbol " - "
Rules Of BOOLEAN MULTIPLICATION are ,
0 - $0=0$
0 - $1=1$
$1 \cdot 0=1$
$1 \cdot 1=1$

LAWS OF BOOLEAN ALGEBRA :-

If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are any VARIABLES then, COMMUTATIVE LAWS :-

1) COMMUTATIVE LAW OF ADDITION :-
$\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
2) COMMUTATIVE LAW OF MULTIPLICATION :-

A•B=B•A
ASSOCIATIVE LAWS :-

1) ASSOCIATIVE LAW OF ADDITION

$$
\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}
$$

2) ASSOCIATIVE LAW OF MULTIPLICATION
$A \bullet(B \bullet C)=(A \bullet B) \bullet C$
DISTRIBUTIVE LAW :-
$A \bullet(B+C)=(A \bullet B)+(A \bullet C)$

SOME RULES USED IN BOOLEAN ALGEBRA :-
$\mathbf{A}+\mathbf{0}=\mathbf{A}$
$A+1=1$

A• $\mathbf{0}=\mathbf{0}$
A• $\mathbf{1}=\mathbf{A}$
$\mathbf{A}+\mathbf{A}=\mathbf{A}$
$\mathbf{A}+\overline{\mathbf{A}}=\mathbf{1}$
$\mathbf{A} \bullet \mathbf{A}=\mathbf{A}$
$\mathbf{A} \bullet \overline{\mathbf{A}}=\mathbf{0}$

$$
\overline{\overline{\mathbf{A}}}=\mathbf{A}
$$

$\mathbf{A}+\mathbf{A B}=\mathbf{A}$
$\mathbf{A}+\overline{\mathbf{A}} \mathbf{B}=\mathbf{A}+\mathbf{B}$
$(\mathbf{A}+\mathrm{B})(\mathbf{A}+\mathbf{C})=\mathbf{A}+\mathbf{B C}$
Ex. Simplify the following expression using Rules and Laws of Boolean Algebra
$\mathbf{A B}+\mathbf{A}(\mathbf{B}+\mathbf{C})+\mathbf{B}(\mathbf{B}+\mathbf{C})$
Ans:-
First using Distributive law to $2^{\text {nd }}$ and $3^{\text {rd }}$ term of the given expression, we get
$\mathrm{AB}+\mathrm{AB}+\mathrm{AC}+\mathrm{BB}+\mathrm{BC}$
Now $\mathrm{AB}+\mathrm{AB}=\mathrm{AB}$ and $\mathrm{BB}=\mathrm{B}$
Therefore, above expression becomes,
$A B+A C+B+B C$

Here, $\mathrm{B}+\mathrm{BC}=\mathrm{B}$
Hence, $\mathrm{AB}+\mathrm{AC}+\mathrm{B}$
Again, $\mathrm{B}+\mathrm{AB}=\mathrm{B}$
Therefore above expression becomes, $\mathbf{B}+\mathbf{A C}$
This is required simplified form of the given expression

De-Morgan's Theorems :-
De-morgan's $1^{\text {st }}$ Theorem states that a COMPLIMENT of ADDITION of TWO
VARIABLES is equal to the PRODUCT of COMPLIMENTS of the given VARIABLES
i.e. $(\overline{\mathbf{A}+\mathbf{B}})=\overline{\mathbf{A}} \bullet \overline{\mathbf{B}}$

De-morgan's $2^{\text {nd }}$ Theorem states that a COMPLIMENT of PRODUCT of TWO
VARIABLES is equal to the ADDITION of COMPLIMENTS of the given VARIABLES
i.e. $(\overline{\mathbf{A} \bullet \mathbf{B}})=\overline{\mathbf{A}}+\overline{\mathbf{B}}$

Ex.1) Apply De-morgan's Theorem to,

$$
\overline{\mathbf{A + B}+\mathbf{C}}
$$

Ans:- Applying De-Morgan's $\mathbf{1}^{\text {st }}$ Theorem to the given expression we get,

$$
\overline{\mathbf{A + B}+\mathbf{C}}=\overline{\mathbf{A}} \bullet \overline{\mathrm{B}} \bullet \bar{C}
$$

Ex.2) Apply De-morgan's Theorem to,

$$
\overline{A \bullet B \bullet C}
$$

Ans:- Applying De-Morgan's $2^{\text {nd }}$ Theorem to the given expression we get,

$$
\overline{\mathbf{A} \bullet \mathbf{B} \bullet \mathbf{C}}=\overline{\mathbf{A}}+\overline{\mathbf{B}}+\overline{\mathbf{C}}
$$

Ex.3) Apply De-morgan's Theorem to,

$$
\overline{\overline{\mathbf{X}}+\overline{\mathbf{Y}}+\overline{\mathbf{Z}}}
$$

Ans:- Applying De-Morgan's $\mathbf{1}^{\text {st }}$ Theorem to the given expression we get,

$$
\overline{\overline{\mathbf{X}}} \bullet \overline{\overline{\mathbf{Y}}} \bullet \overline{\overline{\mathbf{Z}}}
$$

Now we know that, $\overline{\overline{\mathbf{X}}}=\mathbf{X}, \overline{\overline{\mathbf{Y}}}=\mathbf{Y}$ and $\overline{\overline{\mathbf{Z}}}=\mathbf{Z}$
Hence,
Answer is $\mathbf{X} \bullet \mathbf{Y} \bullet \mathbf{Z}$

SUM OF PRODUCTS FORM (SOP) :-

In SOP form of the Boolean Expression product terms are added by using Boolean Addition . e.g. $A B+C D$
$\mathrm{ABC}+\mathrm{DEF}$

KARNAUGH MAP (K-MAP) :-

K-MAP is used for the simplification of the given Boolean expression.
K-MAP can be of many variables as 3,4 etc.
In this chapter we will study 3- Variables K-MAP and 4-Variables K-MAP

3-VARIABLES K-MAP :-

In 3-VARIABLES K-MAP 8 cells are arranged as shown below,

Ex:-Map the following expression into 3-variables K-MAP.
$\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}}+\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C}+\mathbf{A B} \overline{\mathbf{C}}+\mathbf{A B C}$

$A B$		
00	0	
00		1
01		
11	1	1
10	1	

4-VARIABLES K-MAP :-
In 4-VARIABLES K-MAP 16 cells are arranged as shown below,

Ex:-Map the following expression into 4-variables K-MAP.
$\mathbf{A} \overline{\mathbf{B}} \overline{\mathbf{C}} \overline{\mathbf{D}}+\overline{\mathbf{A}} \mathbf{B C} \overline{\mathbf{D}}+\overline{\mathbf{A}} \mathbf{B C D}+\overline{\mathbf{A}} \overline{\mathbf{B}} \mathbf{C} \mathbf{D}+\mathbf{A} \overline{\mathbf{B}} \mathbf{C} \overline{\mathbf{D}}+\mathbf{A B C D}$

$C D$				
00	00	01	11	10
01			1	
11			1	1
10	1		1	

HALF ADDER :-
Half is used to for the addition of TWO Binary digits
Circuit Diagram of the Half Adder is as shown below,

TRUTH TABLE OF HALF ADDER :-

INPUTS		OUTPUTS	
\mathbf{A}	\mathbf{B}	CARRY = A• B	SUM = A $\boldsymbol{\oplus} \mathbf{B}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

FULL ADDER :-
FULL ADDER is used to for the addition of THREE Binary digits
Circuit Diagram of the FULL Adder is as shown below,

TRUTH TABLE OF FULL ADDER :-

INPUTS			OUTPUTS	
\mathbf{A}	\mathbf{B}	\mathbf{C}	CARRY	SUM
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Unit - 3
 MODULATION AND DEMODULATION

In this unit we will study,
INTRODUCTION
TYPES OF MODULATION
EXPRESSION FOR A.M.VOLTAGE
A.M.WAVES

FREQUENCY SPECTRUM OF A.M.WAVES
POWER OUTPUT IN AM
EXPRESSION FOR FREQUENCY MODULATED VOLTAGE
PRINCIPLE OF DEMODULATION
LINEAR DIODE AM DETECTOR OR DEMODULATER

INTRODUCTION :-

What is modulation?
Weak signals can not be transmitted to a large distances by its own due to its lower energy.
So we have to provide an EXTERNAL ENERGY so that the signals can be sent to a large distances

This process of converting a weak signals to a higher frequency signals is called as the MODULATION .

The weak signals are also called as the UNMODULATED signals.

TYPES OF MODULATION :-

On the basis of which parameter of the unmodulated wave is changed there are THREE types of modulation as ;

1) Amplitude Modulation (A.M.)
2) Frequency Modulation (F.M.)
3) Phase Modulation (P.M.)

In Amplitude Modulation only AMPLITUDE of the Unmodulated signals is changed and other two parameters as Frequency and Phase are kept constant.

In Frequency Modulation only Frequency of the unmodulated wave is changed and other two parameters as Amplitude and Phase are kept constant

In Phase Modulation only PHASE of the Unmodulated signals is changed and other two parameters as AMPLITUDE and FREQUENCY are kept constant.

EXPRESSION FOR AMPLITUDE MODULATED VOLTAGE (A.M. VOLTAGE):-

In Amplitude Modulation only AMPLITUDE of the Unmodulated signals is changed and other two parameters as Frequency and Phase are kept constant.

Now the lower frequency modulating voltage is given as ,

$$
\mathbf{e}_{\mathrm{m}}=\mathbf{E}_{\mathrm{m}} \cdot \operatorname{Cos} \boldsymbol{\omega}_{\mathrm{m}} \mathbf{t}
$$

where,
ω_{m} is the Angular Frequency of the modulating voltage
E_{m} is the Amplitude of the modulating voltage
Now the equation of the higher frequency Carrier wave is given as,

$$
\mathbf{e}_{c}=\mathbf{E}_{\mathbf{c} .} \operatorname{Cos}\left(\omega_{c} t+\theta\right)
$$

Here, $\boldsymbol{\theta}$ is the Phase Angle of the Higher Frequency Carrier wave
In Amplitude Modulation this Phase Angle $\boldsymbol{\theta}$ can be neglected .
Hence above equation of the higher frequency Carrier wave can be written as ,

$$
\mathbf{e}_{c}=\mathbf{E}_{\mathbf{c} .} \operatorname{Cos}\left(\omega_{c} t\right)
$$

Now after Amplitude modulation equation of the modulated wave can be written as ,

$$
e=\left(E_{c}+K_{a} E_{m} \cdot \operatorname{Cos} \omega_{m} t\right) . \operatorname{Cos} \omega_{c} t
$$

Taking $\mathbf{E}_{\mathbf{c}}$ common from above equation, we get

$$
e=E_{c}\left(1+K \cdot \frac{E m}{E c} \cdot \operatorname{Cos} \omega_{m} t\right) \cdot \operatorname{Cos} \omega_{c} t
$$

Now put, $\mathbf{K} \cdot \frac{\mathrm{Em}}{\mathbf{E c}}=\mathbf{m}_{\mathbf{a}}$, We get,

$$
\mathbf{e}=E_{c}\left(1+m_{a} \cdot \operatorname{Cos} \omega_{m} t\right) \cdot \cos \omega_{c} t
$$

Where $\mathbf{m}_{\mathbf{a}}$ is called as the modulation index
$\left(100 \mathrm{X}_{\mathrm{a}}\right.$) gives percentage modulation

Waveform of Amplitude Modulated Voltage :-

Now in terms of $\mathbf{E}_{\mathbf{c}} \boldsymbol{\operatorname { m a x }}$ and $\mathbf{E}_{\mathbf{c}}$ we can write Modulation Index \mathbf{m}_{a} as,
$\mathrm{m}_{\mathrm{a}}=\frac{\mathrm{Ec} \text { max }-\mathrm{Ec}}{\mathrm{Ec}}$ \qquad
Also in terms of $\mathbf{E}_{\mathbf{c}} \mathbf{m i n}$ and $\mathbf{E}_{\mathbf{c}}$ we can write Modulation Index $\mathbf{m}_{\mathbf{a}}$ as,
$\mathbf{m}_{\mathrm{a}}=\frac{\mathrm{Ec}-\mathrm{Ec} \text { min }}{\mathrm{Ec}}$ \qquad
Now comparing above equations (1) and (2), we get,
Ec max $-\mathbf{E c}=\mathrm{Ec}-\mathrm{Ec}$ min
Hence, Ec max + Ec min $=2$ Ec
Now adding equations (1) and (2), we get,
$\mathrm{m}_{\mathrm{a}}=\frac{\text { Ec max }- \text { Ec min }}{2 E c}$
Now putting the value of equation (3) in equation (4), we get
$\mathrm{m}_{\mathrm{a}}=\frac{\text { Ec max }- \text { Ec min }}{\text { Ec max }+ \text { Ec min }}$
from the above formula, we can determine the value of Modulation Index experimentally.

SIDEBANDS PRODUCED IN THE AMPLITUDE MODULATED WAVE :-

The modulated voltage is given by the formula,
$e=E_{c}\left(1+m_{a} \cdot \operatorname{Cos} \omega_{m} t\right) \cdot \operatorname{Cos} \omega_{c} t$
Now we know that,

$$
2 \operatorname{Cos} A \cdot 2 \operatorname{Cos} B=\operatorname{Cos}(A+B)+\operatorname{Cos}(A-B)
$$

Now equation (1) can be simplified as,
$\mathrm{e}=\mathbf{E}_{\mathrm{c} \cdot} \operatorname{Cos} \omega_{\mathrm{c}} \mathrm{t}+\frac{\operatorname{maEc}}{2} \cdot\left(\mathbf{2} \operatorname{Cos} \omega_{\mathrm{c}} \mathrm{t} \cdot \operatorname{Cos} \omega_{\mathrm{m}} \mathrm{t}\right)$
$\left.\mathbf{e}=\mathbf{E}_{\mathrm{c}} \cdot \operatorname{Cos} \omega_{\mathrm{c}} \mathrm{t}+\frac{m a E c}{2} \cdot\left[\operatorname{Cos}\left(\omega_{\mathrm{c}}+\omega_{\mathrm{m}}\right) \mathrm{t}+\operatorname{Cos}\left(\omega_{\mathrm{c}}-\omega_{\mathrm{m}}\right) \mathrm{t}\right)\right]$
$\left.\mathrm{e}=\mathbf{E}_{\mathrm{c} \cdot} \cdot \operatorname{Cos} \omega_{\mathrm{c}} \mathrm{t}+\frac{m a E c}{2} \cdot\left[\operatorname{Cos}\left(\omega_{\mathrm{c}}+\omega_{\mathrm{m}}\right) \mathrm{t}+\frac{m a E c}{2} \operatorname{Cos}\left(\omega_{\mathrm{c}}-\omega_{\mathrm{m}}\right) \mathrm{t}\right)\right]$

Now from the above equation, sidebands produced in the AM Wave are,
ORIGINAL HIGHER FREQUENCY CARRIER WAVE :-

$\mathbf{E}_{\mathrm{c} .} \operatorname{Cos} \omega_{\mathrm{c}} \mathrm{t}$

Here angular frequency of the ORIGINAL CARRIER WAVE is " $\boldsymbol{\omega}_{\mathbf{c}}$ "

UPPER SIDEBAND :-

$$
\frac{m a E c}{2} \cdot \operatorname{Cos}\left(\omega_{c}+\omega_{m}\right) t
$$

Here angular frequency of the UPPER SIDEBAND is, $\boldsymbol{\omega}_{\mathbf{c}}+\boldsymbol{\omega}_{\mathbf{m}}$

LOWER SIDEBAND :-

$$
\frac{m a E c}{2} \cdot \operatorname{Cos}\left(\omega_{c}-\omega_{m}\right) t
$$

Here angular frequency of the LOWER SIDEBAND is, $\boldsymbol{\omega}_{\mathbf{c}}-\boldsymbol{\omega}_{\mathbf{m}}$
Location of the Upper and Lower Sidebands are on either sides of the CARRIER wave and the magnitude of the Upper and Lower side bands is Half of the Magnitude of the Carrier Wave

FREQUENCY SPECTRUM OF THE AMPLITUDE MODULATED VOLTAGE :-

Frequency spectrum of the AM Wave is as shown below,

POWER OUTPUT IN A.M.WAVE :-

In the A.M. wave Total power is the sum of energies of its upper and lower side bands.
Modulated wave has following components,
ORIGINAL HIGHER FREQUENCY CARRIER WAVE :-

$\mathbf{E}_{\mathrm{c} .} \operatorname{Cos} \omega_{\mathrm{c}} \mathrm{t}$

Here angular frequency of the ORIGINAL CARRIER WAVE is " $\boldsymbol{\omega}_{\mathbf{c}}$ "

UPPER SIDEBAND :-

$$
\frac{m a E c}{2} \cdot \operatorname{Cos}\left(\omega_{c}+\omega_{m}\right) t
$$

Here angular frequency of the UPPER SIDEBAND is, $\boldsymbol{\omega}_{\mathbf{c}}+\boldsymbol{\omega}_{\mathbf{m}}$

LOWER SIDEBAND :-

$$
\frac{m a E c}{2} \cdot \operatorname{Cos}\left(\omega_{c}-\omega_{m}\right) t
$$

Here angular frequency of the LOWER SIDEBAND is, $\boldsymbol{\omega}_{\mathbf{c}}-\boldsymbol{\omega}_{\mathbf{m}}$
Now the power output given by each component is directly proportional to the square of the amplitude of the AM wave.
Hence, power output from the original Higher frequency carrier wave is directly proportional to the $\boldsymbol{E} \boldsymbol{C}^{\mathbf{2}}$
i.e. Power output in Carrier Wave $=\mathbf{K} . \boldsymbol{E} \boldsymbol{c}^{\mathbf{2}}$
where K is the proportionality constant.
Power in the UPPER sideband $\propto\left(\frac{\boldsymbol{m a E c}}{2}\right)^{2}$
Hence, Power in the UPPER sideband $=\mathbf{K} \frac{\boldsymbol{m} \boldsymbol{a}^{\mathbf{2}}-\boldsymbol{E c}^{\mathbf{2}}}{\mathbf{4}}$

Power in the LOWER sideband $\propto\left(\frac{\boldsymbol{m a E c}}{2}\right)^{\mathbf{2}}$
Hence, Power in the LOWER sideband $=\mathbf{K} \frac{\boldsymbol{m} \boldsymbol{a}^{\mathbf{2}}-\boldsymbol{E} \boldsymbol{c}^{\mathbf{2}}}{\mathbf{4}}$
Total power is the sum of energies of its upper and lower side bands,

Total power output in AM wave is $=\mathbf{K} . \boldsymbol{E} \boldsymbol{c}^{\mathbf{2}}+\mathbf{K} \frac{\boldsymbol{m} \boldsymbol{a}^{\mathbf{2}}-\boldsymbol{E} \boldsymbol{c}^{\mathbf{2}}}{4}+\mathbf{K} \frac{\boldsymbol{m} \boldsymbol{a}^{\mathbf{2}}-\boldsymbol{E} \boldsymbol{c}^{\mathbf{2}}}{\boldsymbol{4}}$

$$
=K \cdot E c^{2}\left(1+\frac{m a^{2}}{2}\right)
$$

Here K. $\boldsymbol{E} \boldsymbol{c}^{\mathbf{2}}$ is the Power output from the Carrier Wave
Hence the above equation can be written as ,
Total Power $=$ Carrier Power $X\left(\mathbf{1}+\frac{\boldsymbol{m \boldsymbol { a } ^ { 2 }}}{\mathbf{2}}\right)$
Now putting $\mathbf{m}_{\mathbf{a}}=\mathbf{1}$, we get
Total Power $=$ Carrier Power $\mathbf{X}\left(\mathbf{1}+\frac{\mathbf{1}}{\mathbf{2}}\right)$
Total Power $=\frac{3}{2}$ Carrier Power

Carrier Power $=\frac{2}{3}$ Total Power

FREQUENCY MODULATIO (F.M.) :-

In Frequency Modulation only FREQUENCY of the Unmodulated signals is changed and other two parameters as Amplitude and Phase are kept constant.

Now the lower frequency modulating voltage is given as ,
$\mathbf{e}_{\mathrm{m}}=\mathbf{E}_{\mathrm{m}} . \operatorname{Cos} \boldsymbol{\omega}_{\mathrm{m}} \mathrm{t}$
where,
ω_{m} is the Angular Frequency of the modulating voltage
E_{m} is the Amplitude of the modulating voltage
Now the higher frequency carrier voltage can be written as,

$$
\mathbf{e}_{c}=\mathbf{E}_{\mathbf{c}} \cdot \operatorname{Sin}\left(\boldsymbol{\omega}_{\mathbf{c}} \mathbf{t}+\boldsymbol{\theta}\right)
$$

Here, $\boldsymbol{\theta}$ is the Phase Angle of the Higher Frequency Carrier Wave
$\mathbf{E}_{\mathbf{c}}$ is the Angular Frequency of the Carrier Wave
$\boldsymbol{\omega}_{\mathbf{c}}$ is the Amplitude of the Carrier Wave
Now put $\boldsymbol{\phi}=\boldsymbol{\omega}_{\mathbf{c}} \mathbf{t}+\boldsymbol{\theta}$ in the above equation we get,

$\mathbf{e}_{c}=\mathbf{E}_{\mathbf{c}} . \operatorname{Sin} \boldsymbol{\operatorname { S i n }}$

Now, the Angular Frequency $\boldsymbol{\omega}_{\mathbf{c}}$ in terms of Phase Angle $\boldsymbol{\phi}$ is given as,
$\omega_{\mathrm{c}}=\frac{d \Phi}{d t}$
After Frequency Modulation, Carrier Frequency can be written as,
$\boldsymbol{\omega}=\boldsymbol{\omega}_{\mathbf{c}}+\mathbf{K}_{\mathbf{f} .} \mathbf{e}_{\mathbf{m}}$
$\omega=\boldsymbol{\omega}_{\mathbf{c}}+K_{\mathbf{f} .} \mathbf{E}_{\mathbf{m}} . \operatorname{Cos} \boldsymbol{\omega}_{\mathbf{m}} \mathbf{t}$
Where, $\mathbf{K}_{\mathbf{f}}$ is the Proportionality Constant for Frequency Modulation
To obtain the value of Phase Angle $\boldsymbol{\phi}$ we integrate the above equation, we get

$$
\begin{aligned}
\phi & =\int \omega \mathrm{dt} \\
\phi & =\int(\omega c+\text { Kf.Em } \cdot \operatorname{Cos} \omega \mathrm{mt}) \mathrm{dt}
\end{aligned}
$$

$$
\phi=\omega_{\mathrm{c}} \cdot \mathbf{t}+K_{\mathrm{f} .} \mathrm{E}_{\mathrm{m}} \cdot \frac{1}{\omega \mathrm{~m}} \cdot \operatorname{Sin} \omega_{\mathrm{m}} \mathrm{t}+\theta_{1}
$$

Now neglecting $\boldsymbol{\theta}_{\mathbf{1}}$, above equation of Frequency Modulation becomes,

$$
\mathbf{e}=\mathbf{E}_{\mathrm{c}} . \operatorname{Sin}\left(\omega_{\mathrm{c}} \mathbf{t}+K_{\mathrm{f}} \cdot E_{\mathrm{m}} \cdot \frac{1}{\omega \mathrm{~m}} \cdot \operatorname{Sin} \omega_{\mathrm{m}} \mathrm{t}\right)
$$

Frequency of the FM Voltage is also given by ,
$\mathrm{f}=\frac{\boldsymbol{\omega}}{2 \boldsymbol{\pi}}$
$f=\frac{\omega c}{2 \pi}+\frac{K f . E m}{2 \pi} \operatorname{Cos} \omega_{m} t$
To get the maximum value of the above higher frequency modulated wave putting

$$
\operatorname{Cos} \omega_{\mathrm{m}} \mathrm{t}=+1
$$

To get the minimum value of the above higher frequency modulated wave putting $\operatorname{Cos} \boldsymbol{\omega}_{\mathbf{m}} \mathbf{t}$ $=-1$, above values of Modulated Frequency becomes,

Hence,
$\mathbf{f}_{\text {max }}=\mathbf{f}_{\mathbf{c}}+\mathbf{K}_{\mathrm{f}} \cdot \frac{\mathrm{Em}}{\mathbf{2 \pi}}$
$\mathbf{f}_{\text {min }}=\mathbf{f}_{\mathbf{c}}-\mathbf{K}_{\mathrm{f}} \cdot \frac{\mathrm{Em}}{2 \pi}$
Now , maximum change or deviation in the Modulated Frequency $\mathbf{f}_{\mathbf{d}}$ is given as,

$$
\begin{aligned}
\mathbf{f}_{\mathbf{d}} & =\mathbf{f}_{\max -} \mathbf{f}_{\mathbf{c}} \\
& =f_{\mathbf{c}}+\mathbf{K}_{\mathbf{f}} \cdot \frac{\mathrm{Em}}{2 \pi}-\mathbf{f} \mathbf{c} \\
\mathbf{f}_{\mathbf{d}} & =\mathbf{K}_{\mathrm{f}} \cdot \frac{\mathrm{Em}}{2 \pi}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{f}_{\mathbf{d}} & =\mathbf{f}_{\mathbf{c}-} \mathbf{f}_{\mathrm{min}} \\
& =\mathbf{f}_{\mathbf{c}}-\mathbf{K}_{\mathbf{c}} \cdot \frac{\mathrm{Em}}{2 \pi}
\end{aligned}
$$

$$
\mathbf{f}_{\mathbf{d}}=K_{\mathrm{f}} \cdot \frac{E m}{2 \pi}
$$

Modulation Index of Frequency Modulated Voltage :-

Modulation Index of Frequency Modulated Voltage is the ratio of the Deviation in Frequency $\mathbf{f}_{\mathbf{d}}$ and the Frequency of the Carrier wave $\mathbf{f}_{\mathbf{c}}$,
i.e. $m f=\frac{f d}{f c}=K f \cdot \frac{E m}{2 \pi} \times \frac{1}{f c}$
$\mathbf{m f}=K \mathbf{K} \cdot \frac{\mathrm{Em}}{2 \pi \mathrm{fc}}$
But,

$$
\omega_{c}=2 \pi f_{c}
$$

The value of the modulation index can be written as,

$$
\boldsymbol{m}_{\mathrm{f}}=K \mathbf{K} \cdot \frac{\mathrm{Em}}{\omega c}
$$

Deviation Ratio of Frequency Modulated Voltage :-

Deviation Ratio can be defined as the ratio of the deviation in frequency $\mathbf{f}_{\mathbf{d}}$ and the modulation index of the frequency modulataion $\mathbf{f}_{\mathbf{m}}$
i.e. $\boldsymbol{\delta}=\frac{\mathrm{fd}}{\mathrm{fm}}$

Now putting the value of deviation in frequency $\mathbf{f}_{\mathbf{d}}=\mathbf{K}_{\mathbf{f}} \cdot \frac{\mathbf{E m}}{\mathbf{2 \pi}}$, above equation of frequency deviation ratio becomes,
$\boldsymbol{\delta}=\mathbf{K}_{\mathrm{f}} \cdot \frac{\mathrm{Em}}{2 \boldsymbol{\pi f m}}$

But we know that, $\boldsymbol{\omega}_{\mathbf{m}}=\mathbf{2} \boldsymbol{\pi} \mathbf{f}_{\mathbf{m}}$, equation becomes,
$\boldsymbol{\delta}=\mathbf{K}_{\mathbf{f}} \cdot \frac{\mathrm{Em}}{\omega \mathrm{m}}$
Now multiplying and dividing above equation by $\boldsymbol{\omega}_{\mathbf{c}}$ we get,

$$
\delta=\left(K_{f} \cdot \frac{\mathrm{Em}}{\omega \mathbf{c}}\right) \times \frac{\omega \mathbf{c}}{\omega \mathbf{m}}
$$

$\operatorname{Putting}\left(\mathbf{K}_{\mathbf{f}} \cdot \frac{\mathbf{E m}}{\boldsymbol{\omega} \mathbf{c}}\right)=\boldsymbol{m}_{\mathbf{f}}$, above equation of deviation ratio becomes ,
$\boldsymbol{\delta}=\mathbf{m}_{\mathbf{f}} \mathbf{x} \frac{\omega \mathbf{c}}{\omega \mathbf{m}}$

Using above value of deviation ratio , frequency modulated voltage can be written as,

$$
\begin{aligned}
& \mathbf{e}=\mathbf{E}_{\mathbf{c} .} \cdot \operatorname{Sin}\left(\boldsymbol{\omega}_{\mathrm{c}} t+\left(K_{\mathrm{f} .} \mathbf{E}_{\mathrm{m}} \cdot \frac{1}{\omega \mathrm{~m}}\right) . \operatorname{Sin} \omega_{\mathrm{m}} \mathbf{t}\right) \\
& \mathbf{e}=\mathbf{E}_{\mathbf{c} \cdot} \cdot \operatorname{Sin}\left(\boldsymbol{\omega}_{\mathrm{c}} \mathbf{t}+\boldsymbol{\delta} . \operatorname{Sin} \omega_{\mathrm{m}} \mathbf{t}\right)
\end{aligned}
$$

PRINCIPLE OF DEMODULATION :-

Process of getting the lower frequency modulating wave from the higher frequency modulated carrier wave is called as the Demodulation or this process is also called as the Detection

TYPES OF DETECTORS :-

There are two types of dectors as follow ,

a) Linear Detectors

In Linear Detectors Output of the Amplitude is the linear function of the Input Amplitude
b) Non Linear Detectors

In Linear Detectors Output of the Amplitude is not the linear function of the Input Amplitude

LINEAR DIODE AM DETECTOR OR DEMODULATOR :-

In linear Diode AM detectors OUTPUT of the amplitude is linearly proportional to the INPUT.

Circuit Diagram of the Linear Diode AM detector is as shown below ,

WORKING OF LINEAR DIODE AM DETECTOR :-

Linear Diode AM detector works like a Half-Wave Rectifier.
The modulated waves are provided to the Transformer.
The current flows only during the positive half cycles, therefore we get rectified waves of positive half cycles.

These rectified waves are then provided to the RC filter to make them audible.
During these positive half cycles capacitor gets charged to its maximum value.
These changes can be converted into desired lower frequency original waves.

Unit-4

COMMUNICATION SYSTEM

In this chpter we will study about following topics ,
INTRODUCTION
BLOCK DIAGRAM OF BASIC COMMUNICATION SYSTEM
ESSENTIAL ELEMENTS OF A.M. TRANSMITTER
A.M. RECEIVER

TUNNED RADIO FREQUENCY (TRF) RECEIVER
SUPER HETERODYNE RECEIVER
CHARCHTERISTICS OF RADIO RECEIVERS: SENSITIVITY, SELECTIVITY, FIDELITY AND THEIR MEASUREMENTS

Introduction :-

To transmit the data or information from one place to another we use a "Communication System "

BLOCK DIAGRAM OF BASIC COMMUNICATION SYSTEM :-

BLOCK DIAGRAM OF BASIC COMMUNICATION SYSTEM

A basic communication system have the following components as ,

a) Input Signal :-

Input signal is the Information or data that we want to transmit from one place to another.

b) Input Transducer :-

The input signals can not be transmitted from one place to another as it is. Therefore input signals are converted into electrical signals by using Input Transducers.

Examples of Input transducers used in the communication systems are, microphones, Video cameras etc.
c) Transmitter:-

The transmitter have following components ,
Amplifier
Mixer
Oscillator

Power Amplifier

The Input signals converted into the electrical signals by the Input transducer, are then converted into the desired form.

The transmitter is used to increase the power level of the Input signals, so that they can travel a large distance through the communication medium.
d) Communication medium :-

To transmit the Information or Input signals from one place to another we need Communication medium.

Examples of communication medum are ,
Free space, Optiacal Fibre, Wires etc.
Communication system can be divided into two types on the basis of which type of communication medium is used as follows,

A) Radio Communication :-

If the communication medium used in the Communication system is " free space " then that type of communication is called as the "Radio Communication"

Radio Communication has a very long range as compared to the Wire Communication . Therefore by using Radio Communication Input signals or Information can be sent to the large distances.

B) Wire Communication :-

In the Wire Communication, Optical Fibres or cable Wires are used as communication system.

Wire Communication has lower range as compared to the Radio Communication System.
e) NOISE :-

Noise are the unwanted signals that get added in the desired Input signals while transmitting from one place to the another place though communication medium.

f) RECEIVER :-

Receiver collects the data sent by the transmitter

g) OUTPUT TRANSDUCER :-

Output Transducer converts the data recevived from the receiver into the desired Input signals or data

WHAT ARE THE BASE BAND SIGNALS :-

The original signals or information or data as it is without any modulation, is called as th BASE BAND SIGNALS or Lower Frequency Modulating Waves

COMMUNICATION SYSTEMS USING MODULATION :-

The BASE BAND SIGNALS have very short range. So to transmit the BASE BAND SIGNALS to the large distances we Modulate the BASE BAND SIGNALS with the Higher Frequency Carrier Waves.

As we have already sudied in the last Chapter , there are three types of Modulation as,
Amplitude Modulation (A.M.)
Frequency Modulation (F.M.)
Phase Modulation (P.M.)

NEED OF MODULATION IN THE COMMUNICATION SYSTEMS :-

Modulation is useful in many ways in the Communication systems as ,

1) Modulation Reduces the Height of the Antenna :-

If $\boldsymbol{\lambda}$ is the wavelength of the signals then for thier transmission the Height of the antenna must be multiple of the $\frac{\lambda}{4}$.

Now we know that, $\boldsymbol{\lambda}=\frac{\boldsymbol{C}}{\boldsymbol{f}}$
Where, C is the velocity of the light and f is the frequency of the Input signals .

Now for an example, we are transmitting the Base Band Signals of $\mathbf{5} \mathbf{K H z}$ then, wavelength of the Input Signal would be ,

$$
\lambda=\frac{c}{f}=\frac{3 \times 10^{8} \mathrm{~m} / \mathrm{s}}{5 \times 10^{3} \mathrm{~Hz}}
$$

$$
\lambda=60,000 \mathrm{~m}
$$

So the height of the Antenna would be ,

$$
\frac{\lambda}{4}=\frac{60,000}{4} \mathrm{~m}=15,000 \mathrm{~m}=15 \mathrm{~km}
$$

So , it is impossible to Install the Antenna of Height 15 km
Now we use Modulated Signals having frequency $\mathbf{f}=\mathbf{1 0} \mathbf{~ M H z}$ then its wavelength is,

$$
\lambda=\frac{C}{f}=\frac{3 X 10^{8} \mathrm{~m} / \mathrm{s}}{10 \times 10^{6} \mathrm{~Hz}}
$$

$$
\lambda=30 \mathrm{~m}
$$

So the height of the Antenna would be ,
$\frac{\lambda}{4}=\frac{30}{4} \mathrm{~m}=7.5 \mathrm{~m}$
Antenna of this height can be easily installed. So in this way by using modulation height of the Antenna gets reduced .
2) By using modulation, many signals can be transmitted throuth the same communication medium.
3) Modulation also Increases the RANGE of the Communication, because modulated signals are the higher frequency signals that have very high energy so that they can be transmitted to the large distances
4) Noise gets reduced with modulation.

A.M. RADIO RECEIVER :-

Receivers first demodulate the given higher frequency modulated signals and then amplify that demodulated signals.

There are two types of receivers that we will study as ,
(1)Tunned Radio Frequency (TRF) Receivers :-

In TRF receiver the RF amplifiers are tunned to the disired frequency .
Detector,audio amplifier and power amplifiers are connected next to the RF amplifiers.
Different waves passing over the receiving Antenna induces different types of signals having different frequency range.Now RF amplifiers select only desired signal and then amplify it. Amplified higher frequency signals are then demodulated by using Detector.

Finally this detected signal is amplified by using audio amplifier and power amplifier and provided to the loudspeaker.

SUPER HETERODYNE RECEIVER :-

Advantage of Super Heterodyne Receiver over TRF receiver is that RF signal is replaced with a fixed lower frequency known as constant Intermediate Frequency (IF) which is lower than the lowest RF signal and same for all RF signals.

This results in the stabilized signals with minimum oscillation. This Intermediate Frequency (IF) is then amplified and original Lower Frequency Modulating signal is obtained back from IF by using Detector .

BLOCK DIAGRAM OF SUPER HETRODYNE RECEIVER

The RF amplifier is used to select only desired signal. Hence Noise gets reduced.
At the output of RF amplifier we get frequency $\mathbf{f}_{\mathbf{s}}$.
Signals from RF local oscillator and RF amplifier are sent to Mixer.
A capacitor is used in Gauged tunning to maintain a constant difference between local oscillator and Input Frequency .

Advantage of Super Heterodyne Receiver is that the properties of the radio receiver like Sensitivity and Selectivity are not changing with change in the Incoming Frequency.

Characteristics Of Radio Receivers :-

To determine how well the Radio Receiver is working we take the help of certain parameters of the Radio Receivers as ,

SENSITIVITY

SELECTIVITY

FIDELITY

We will study these important characteristics of Radio receivers one by one as follows ,

SENSITIVITY:-

The ability of the Radio receiver to amplify the weak signals is called as the SENSITIVITY of radio receiver. Sensitivity is measured in volts or decibels.

Fig. SENSITIVITY CURVE
Sensitivity of the receiver is determined by using Gain of RF and IF of the amplifiers.
Sensitivity of the Radio receiver is highest at $\mathbf{8 5 0} \mathbf{~ K H z}$.

Measurement Of the Sensitivity :-

AM signals are provided to the receiver by using a coupling network. With the help of load resistance power output is measured.

A dummy antenna receives a signal of 400 Hz with 30% modulation.
To achieve maximum sensitivity of the receiver 50 mW power is supplied.

Procedure Of Measurement of Sensitivity :-

A signal of 400 Hz with 30% modulation is provided by the AM signal generator.
Carrier frequency of the AM generator is adjusted to 530 KHz with 50 mW output power .
Now respective Input Voltage is measured.
Carrier Frequencies are varied from 530 KHz to 1650 KHz and the respective Input Voltages are measured.

Finally plot the graph of sensitivity curve with carrier frequency on X-axis and Receiver Input on Y-axis.

SELECTIVITY :-

Ability of the Radio receiver to select the desired signal and reject the unwanted signal is called as the " Selectivity of the Radio Receiver "

A frequency output of 950 KHz is obtained by tunning the receiver to 950 KHz
To get the receiver output of 50 mW generator output power is adjusted in steps.
A graph is plotted with Deviation from Resonant Frequency in KHz on X -axis and Attenuation on Y-axis.
The narrower is the selectivity curve, more is the selectivity of the receiver becomes.

FIDELITY OF THE RADIO RECEIVER :-

The ability of the Radio receiver to reproduce all the original lower frequency signals equally is called as the " FIDELITY " of the radio receiver .

AF amplifier decides the Fidelity of the given radio receiver .
To obtain a quality music High Fidelity is required i.e. Fidelity curve must be flat.

PROCEDURE OF MEASURING FIDELITY OF THE RADIO RECEIVER :-

A constant Carrier frequency of 1000 KHz with 30% modulation is obtained to measure the fidelity of the radio receiver.

To get the maximum constant output, modulating frequency and output voltage are varied while keeping constant Input voltage.

Modulating Frequencies are varied from 10 Hz to 10 KHz and the respective Output Voltages are measured.

A graph is plotted with modulating Frequencies in KHz on X -axis and Output power on Yaxis.

For all the audio frequencies fidelity curve must be flat.

Books Referred :-

1.Modern Digital Electronics- R.P. Jain, Tata McGraw Hill Pub. Company (Third edition)
2.Digital Fundamentals-Thomas L. Floyd, Universal Book Stall
3.Digital Principles and Applications- A. P. Malvino, (McGraw Hill International Editions(Fourth Edition)
4.Digital Electronics with Practical Approach- G. N. Shinde, Shivani Pub., Nanded
5.Electronics and Radio Engineering - M. L. Gupta
6.Communication Engineering - J.S. Katre (Tech Max Pub - Second revi. edition)

Ajanta Publication And Nutan Mahavidyalaya, Sailu
Date Of Publication : May 2023
©All rights are reserved under Copyright Act
" DIGITAL AND COMMUNICATION ELECTRONICS"
Ajanta Publication, Aurangabad
Nutan Mahavidyalaya, Sailu

ISBN :- 978-93-83587-05-06
Published by Ajanta Publication, Aurangabad
Near BAMU University GATE, Jaising Pura, Aurangabad HO, Aurangabad-Maharashtra-431001

Nutan Mahavidyalaya, Selu
Jintur Road, Near Power House, Sailu, Parbhani-431503

[^0]: Ans:- ($\mathbf{3 3})_{10}=(41)_{8}$

[^1]: Ans:- $(\mathbf{1 0 0 1 0 0})_{\text {GRAY }}=(101111)_{2}$

